Add like
Add dislike
Add to saved papers

[Construction of injectable tissue engineered adipose tissue with fibrin glue scaffold and human adipose-derived stem cells transfected by lentivirus vector expressing hepatocyte growth factor].

Objective: To discuss the possibility of constructing injectable tissue engineered adipose tissue, and to provide a new approach for repairing soft tissue defects.

Methods: Human adipose-derived stem cells (hADSCs) were extracted from the lipid part of human liposuction aspirate by enzymatic digestion and identified by morphological observation, flow cytometry, and adipogenic induction. The hADSCs underwent transfection by lentivirus vector expressing hepatocyte growth factor and green fluorescent protein (HGF-GFP-LVs) of different multiplicity of infection (MOI, 10, 30, 50, and 100), the transfection efficiency was calculated to determine the optimum MOI. The hADSCs transfected by HGF-GFP-LVs of optimal MOI and being adipogenic inducted were combined with injectable fibrin glue scaffold, and were injected subcutaneously into the right side of the low back of 10 T-cell deficiency BALB/c female nude mice (transfected group); non-HGF-GFP-LVs transfected hADSCs (being adipogenic inducted) combined with injectable fibrin glue scaffold were injected subcutaneously into the left side of the low back (untransfected group); and injectable fibrin glue scaffold were injected subcutaneously into the middle part of the neck (blank control group); 0.4 mL at each point. Twelve weeks later the mice were killed and the implants were taken out. Gross observation, wet weight measurement, HE staining, GFP fluorescence labeling, and immunofluorescence staining were performed to assess the in vivo adipogenic ability of the seed cells and the neovascularization of the grafts.

Results: The cultured cells were identified as hADSCs. Poor transfection efficiency was observed in MOI of 10 and 30, the transfection efficiency of MOI of 50 and 100 was more than 80%, so the optimum MOI was 50. Adipose tissue-like new-born tissues were found in the injection sites of the transfected and untransfected groups after 12 weeks of injection, and no new-born tissues was found in the blank control group. The wet-weight of new-born tissue in the transfected group [(32.30±4.06) mg] was significantly heavier than that of the untransfected group [(25.27±3.94) mg] ( t =3.929, P =0.001). The mature adipose cells in the transfected group [(126.93±5.36) cells/field] were significantly more than that in the untransfected group [(71.36±4.52) cells/field] ( t =30.700, P =0.000). Under fluorescence microscopy, some of the single cell adipocytes showed a network of green fluorescence, indicating the presence of GFP labeled exogenous hADSCs in the tissue. The vascular density of new-born tissue of the transfected group [(16.37±2.76)/field] was significantly higher than that of the untransfected group [(9.13±1.68)/field] ( t =8.678, P =0.000).

Conclusion: The hADSCs extracted from the lipid part after liposuction can be used as seed cells. After HGF-GFP-LVs transfection and adipose induction, the hADSCs combined with injectable fibrin glue scaffold can construct mature adipose tissue in vivo , which may stimulate angiogenesis, and improve retention rate of new-born tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app