Journal Article
Review
Add like
Add dislike
Add to saved papers

3D genome and its disorganization in diseases.

The chromosomes in eukaryotic cells are highly folded and organized to form dynamic three-dimensional (3D) structures. In recent years, many technologies including chromosome conformation capture (3C) and 3C-based technologies (Hi-C, ChIA-PET) have been developed to investigate the 3D structure of chromosomes. These technologies are enabling research on how gene regulatory events are affected by the 3D genome structure, which is increasingly implicated in the regulation of gene expression and cellular functions. Importantly, many diseases are associated with genetic variations, most of which are located in non-coding regions. However, it is difficult to determine the mechanisms by which these variations lead to diseases. With 3D genome technologies, we can now better determine the consequences of non-coding genome alterations via their impact on chromatin interactions and structures in cancer and other diseases. In this review, we introduce the various 3D genome technologies, with a focus on their application to cancer and disease research, as well as future developments to extend their utility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app