Add like
Add dislike
Add to saved papers

BCL2 Regulates Differentiation of Intestinal Fibroblasts.

Background: Fibrosis in patients with Crohn's disease (CD) results from an imbalance toward excessive fibrous tissue formation driven by fibroblasts. Activation of fibroblasts is linked to the B-cell lymphoma 2 (BCL2) family, which is involved in the induction of apoptosis. We investigated the impact of BCL2 repression on fibrogenesis.

Methods: The model of dextran sodium sulfate (DSS)-induced chronic colitis and the heterotopic transplantation model of fibrosis were used. Following the administration of the BCL2 antagonist (ABT-737, 50 mg/kg/d), collagen layer thickness and hydroxyproline (HYP) content were determined. Fibroblasts were stimulated with the BCL2 antagonist (0.01-100 µM). BCL2, alpha smooth muscle actin (αSMA), and collagen I (COL1A1) were determined by quantitative polymerase chain reaction (qPCR), immunofluorescence microscopy (IF), and western blot (WB). mRNA expression pattern was determined by next-generation sequencing (NGS).

Results: Collagen layer thickness was significantly decreased in both DSS-induced chronic colitis and the transplantation model of fibrosis upon BCL2 antagonist administration compared with vehicle. Decreased HYP content confirmed the preventive effects of the BCL2 antagonist on fibrosis. In vitro, a significant increase in PI+/annexin V+ human colonic fibroblasts was determined by fluorescence-activated cell sorting upon treatment with high-dose BCL2 antagonist; at a lower dose, αSMA, COL1A1, and TGF were decreased. NGS, IF, and qPCR revealed decreased expression and nuclear translocation of GATA6 and SOX9, known for reprogramming fibroblasts.

Conclusion : BCL2 antagonist administration partially prevented fibrogenesis in both fibrosis models. The BCL2 antagonist reduced the expression of TGFβ-induced factors involved in differentiation of myofibroblasts, and therefore might represent a potential treatment option against CD-associated fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app