Add like
Add dislike
Add to saved papers

Phase-pure pentlandite Ni 4.3 Co 4.7 S 8 binary sulfide as an efficient bifunctional electrocatalyst for oxygen evolution and hydrogen evolution.

Nanoscale 2018 June 8
Developing an efficient non-noble bifunctional electrocatalyst for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in the same electrolyte is significant for lowering the cost of electrochemical water splitting. Herein, a phase-pure pentlandite Ni4.3Co4.7S8 bifunctional electrocatalyst was synthesized via a hydrothermal process using a commercial nickel foam as the nickel source. The active metallic nickel source and the chelating agent ethylenediamine play important roles in the formation of phase-pure pentlandite Ni4.3Co4.7S8 binary sulfide. Physicochemical characterizations, electrochemical measurements and density functional theory (DFT) computations illustrate that the material has an exposed high-indexed (022) surface with a biomimetic hydrogenase-like structure, and that the pentlandite phase has metallic characteristics, with next-nearest neighbor metal-metal bonds, as well as there being a high overlap of density of state (DOS) at the Fermi-level due to the synergistic effect between Ni and Co ions. In addition, there is an elevation of the d-state center (from -2.84 to -1.52 eV) with high occupation of the anti-bonding eg (dx2-y2 and dz2) d-orbitals. These properties endow the Ni4.3Co4.7S8 bifunctional electrocatalyst with higher catalytic activity for OER than RuO2, with comparative activity for HER to commercial Pt/C and with a low over-potential for all water splitting in an alkaline electrolyte. The studies here provide a novel strategy to synthesise phase-pure pentlandite nickel cobalt binary sulfides and boost their applications in electrochemical water splitting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app