Add like
Add dislike
Add to saved papers

Using a simulation approach to optimize time-domain diffuse correlation spectroscopy measurement on human head.

Neurophotonics 2018 April
Time-domain diffuse correlation spectroscopy (TD-DCS) has been recently proposed to improve detection of deep blood flow dynamics in a biological tissue, such as human brain. To obtain a high sensitive measurement, several experimental parameters such as the source-detector (SD) distance, gate opening time, and width need to be considered and optimized. We use a simulation approach to optimize these parameters based on Monte Carlo computations using a realistic human head model. Two cortical regions are investigated including the frontal and temporal lobes. SD distance ranging from 0 to 45 mm, gate opening time from 400 to 1000 ps, and gate width from 50 to 3000 ps are considered. The goal is to find out the optimal combinations of these parameters by which the higher contrast measurement on the cortical dynamics can be achieved. The simulations show that with an acceptable input power of light, the combinations of SD distance ranging from 0 to 15 mm, gate opening time at 700 to 800 ps, and gate width of 800 ps are optimal for achieving higher contrast measurement on the cortical dynamics. The simulation approach and results are helpful for the optimization of TD-DCS experimental design focused on brain functional detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app