Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Adding a temporal dimension to the study of Friedreich's ataxia: the effect of frataxin overexpression in a human cell model.

The neurodegenerative disease Friedreich's ataxia is caused by lower than normal levels of frataxin, an important protein involved in iron-sulfur (Fe-S) cluster biogenesis. An important step in designing strategies to treat this disease is to understand whether increasing the frataxin levels by gene therapy would simply be beneficial or detrimental, because previous studies, mostly based on animal models, have reported conflicting results. Here, we have exploited an inducible model, which we developed using the CRISPR/Cas9 methodology, to study the effects of frataxin overexpression in human cells and monitor how the system recovers after overexpression. Using new tools, which range from high-throughput microscopy to in cell infrared, we prove that overexpression of the frataxin gene affects the cellular metabolism. It also leads to a significant increase of oxidative stress and labile iron pool levels. These cellular alterations are similar to those observed when the gene is partly silenced, as occurs in Friedreich's ataxia patients. Our data suggest that the levels of frataxin must be tightly regulated and fine-tuned, with any imbalance leading to oxidative stress and toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app