JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

[Cardiovascular consequences of chronic kidney disease, impact of modulation of epoxyeicosatrienoic acids].

Cardiovascular events are more prevalent in chronic kidney disease than in the general population, being the main cause of morbi-mortality. The physiopathology explaining this association remains complex. Thus, research for new therapies to prevent cardiovascular events in chronic kidney disease is a major issue. Epoxyeicosatrienoic acids, products of the arachidonic acid metabolism, are endothelium-derived hyperpolarizing factors with vasodilatory, anti-inflammatory, thrombolytic, pro-angiogenic and anti-apoptotic properties. A decrease in the bioavailability of epoxyeicosatrienoic acids has been observed in many cardiovascular diseases such as hypertension, myocardial infarction or diabetes. Moreover, human studies of genetic polymorphisms of soluble epoxide hydrolase, the enzyme degrading epoxyeicoatrienoic acids, have shown that allelic variants related to an increase in its activity is associated with higher risk of cardiovascular events. Modulation of epoxyeicosatrienoic acids by soluble epoxide hydrolase inhibitors in some cardiovascular diseases induces structural improvements in the heart, vessels and kidneys, including decrease in cardiomyocyte hypertrophy, reduction in cardiac and renal interstitial fibrosis, improvement in renal hemodynamics, and prevention of endothelial dysfunction. In this context, increasing the bioavailability of epoxyeicosatrienoic acids appears to be an interesting therapeutic option in the prevention of cardiovascular events related to chronic kidney disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app