Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration.

Several molecular pathways are currently being targeted in attempts to develop disease-modifying therapies to slow down neurodegeneration in Parkinson's disease. Failure of cellular energy metabolism has long been implicated in sporadic Parkinson's disease and recent research on rare inherited forms of Parkinson's disease have added further weight to the importance of energy metabolism in the disease pathogenesis. There exists a new class of anti-diabetic insulin sensitizers in development that inhibit the mitochondrial pyruvate carrier (MPC), a protein which mediates the import of pyruvate across the inner membrane of mitochondria. Pharmacological inhibition of the MPC was recently found to be strongly neuroprotective in multiple neurotoxin-based and genetic models of neurodegeneration which are relevant to Parkinson's disease. In this review, we summarize the neuroprotective effects of MPC inhibition and discuss the potential putative underlying mechanisms. These mechanisms involve augmentation of autophagy via attenuation of the activity of the mammalian target of rapamycin (mTOR) in neurons, as well as the inhibition of neuroinflammation, which is at least partly mediated by direct inhibition of MPC in glia cells. We conclude that MPC is a novel and potentially powerful therapeutic target that warrants further study in attempts to slow Parkinson's disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app