Add like
Add dislike
Add to saved papers

In vitro investigation of the effects of exogenous sugammadex on coagulation in orthopedic surgical patients.

BMC Anesthesiology 2018 May 25
BACKGROUND: Previous studies have shown that sugammadex resulted in the prolongation of prothrombin time and activated partial thromboplastin time. In this study, we aimed to investigate the in vitro effects of exogenous sugammadex on the coagulation variables of whole blood in healthy patients who underwent orthopedic surgery.

METHODS: The effects of sugammadex on coagulations were assessed using thromboelastography (TEG) in kaolin-activated citrated blood samples taken from 14 healthy patients who underwent orthopedic surgery. The in vitro effects of three different concentrations of sugammadex (42, 193, and 301 μg mL- 1 ) on the TEG profiles were compared with those of the control (0 μg mL- 1 ). Previous studies indicated that these exogenous concentrations correspond to the approximate maximum plasma concentrations achieved after the administration of 4, 16, and 32 mg kg- 1 sugammadex to healthy subjects.

RESULTS: Increased sugammadex concentrations were significantly associated with reduced coagulation, as evidenced by increases in reaction time (r), coagulation time, and time to maximum rate of thrombus generation (TMRTG), and decreases in the angle, maximum amplitude, and maximum rate of thrombus generation. Compared with the control, the median percentage change (interquartile range) in the TEG values of the samples treated with the highest exogenous sugammadex concentration was the greatest for r, 53% (26, 67.3%), and TMRTG, 48% (26, 59%).

CONCLUSIONS: This in vitro study suggests that supratherapeutic doses of exogenous sugammadex might be associated with moderate hypocoagulation in the whole blood of healthy subjects.

TRIAL REGISTRATION: identifier:  UMIN000029081 , registered 11 September 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app