Add like
Add dislike
Add to saved papers

sRNAome and transcriptome analysis provide insight into chilling response of cowpea pods.

Gene 2018 May 22
Cowpea is an important horticultural crop in tropical and subtropical areas of Asia, Africa, and Latin America, as well as parts of southern Europe and Central and South America. Chilling injury is a common physiological hazard of cowpea in cold chain logistics which reduce the cowpea pod's nutritional quality and product value. However, the molecular mechanism involved in chilling injury remains unclear in cowpea pods. RNA-Seq and sRNA-Seq technologies were employed to decipher the miRNAs and mRNAs expression profiles and their regulatory networks in cowpea pods involved in chilling stress. Differentially expressed miRNAs and mRNA profiles were obtained based on cluster analysis, miRNAs and target genes were found to show coherent relationships in the regulatory networks of chilling injury. Furthermore, we found that numerous miRNAs and nat-siRNAs' targets were predicted to be key enzymes involved in the redox reactions such as POD, CAT, AO and LOX, energy metabolism such as ATPase, FAD and NAD related enzymes and different transcription factors such as WRKY, bHLH, MYB, ERF and NAC which play important roles in chilling injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app