Add like
Add dislike
Add to saved papers

Protein-Based Electronic Skin Akin to Biological Tissues.

ACS Nano 2018 May 31
Human skin provides an interface that transduces external stimuli into electrical signals for communication with the brain. There has been considerable effort to produce soft, flexible, and stretchable electronic skin (E-skin) devices. However, common polymers cannot imitate human skin perfectly due to their poor biocompatibility, biofunctionality, and permeability to many chemicals and biomolecules. Herein, we report on highly flexible, stretchable, conformal, molecule-permeable, and skin-adhering E-skins that combine a metallic nanowire (NW) network and silk protein hydrogel. The silk protein hydrogels offer high stretchability and stability under hydration through the addition of Ca2+ ions and glycerol. The NW electrodes exhibit stable operation when subjected to large deformations and hydration. Meanwhile, the hydrogel window provides water and biomolecules to the electrodes (communication between the environment and the electrode). These favorable characteristics allow the E-skin to be capable of sensing strain, electrochemical, and electrophysiological signals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app