Add like
Add dislike
Add to saved papers

Biosynthesis of Lincosamide Antibiotics: Reactions Associated with Degradation and Detoxification Pathways Play a Constructive Role.

Natural products typically are small molecules produced by living organisms. These products possess a wide variety of biological activities and thus have historically played a critical role in medicinal chemistry and chemical biology either as chemotherapeutic agents or as useful tools. Natural products are not synthesized for use by human beings; rather, living organisms produce them in response to various biochemical processes and environmental concerns, both internal and external. These processes/concerns are often dynamic and thus motivate the diversification, optimization, and selection of small molecules in line with changes in biological function. Consequently, the interactions between living organisms and their environments serve as an engine that drives coevolution of natural products and their biological functions and ultimately programs the constant theme of small-molecule development in nature based on biosynthesis generality and specificity. Following this theme, we herein review the biosynthesis of lincosamide antibiotics and dissect the process through which nature creates an unusual eight-carbon aminosugar (lincosamide) and then functionalizes this common high-carbon chain-containing sugar core with diverse l-proline derivatives and sulfur appendages to form individual members, including the clinically useful anti-infective agent lincomycin A and its naturally occurring analogues celesticetin and Bu-2545. The biosynthesis of lincosamide antibiotics is unique in that it results from an intersection of anabolic and catabolic chemistry. Many reactions that are usually involved in degradation and detoxification play a constructive role in biosynthetic processes. Formation of the trans-4-propyl-l-proline residue in lincomycin A biosynthesis requires an oxidation-associated degradation-like pathway composed of heme peroxidase-catalyzed ortho-hydroxylation and non-heme 2,3-dioxygenase-catalyzed extradiol cleavage for l-tyrosine processing prior to the building-up process. Mycothiol (MSH) and ergothioneine (EGT), two small-molecule thiols that are known for their redox-relevant roles in protection against various endogenous and exogenous stresses, function through two unusual S-glycosylations to mediate an eight-carbon aminosugar transfer, activation, and modification during the molecular assembly and tailoring processes in lincosamide antibiotic biosynthesis. Related intermediates include an MSH S-conjugate, mercapturic acid, and a thiomethyl product, which are reminiscent of intermediates found in thiol-mediated detoxification metabolism. In these biosynthetic pathways, "old" protein folds can result in "new" enzymatic activity, such as the DinB-2 fold protein for thiol exchange between EGT and MSH, the γ-glutamyltranspeptidase homologue for C-C bond cleavage, and the pyridoxal-5'-phosphate-dependent enzyme for diverse S-functionalization, generating interest in how nature develops remarkably diverse biochemical functions using a limited range of protein scaffolds. These findings highlight what we can learn from natural product biosynthesis, the recognition of its generality and specificity, and the natural theme of the development of bioactive small molecules, which enables the diversification process to advance and expand small-molecule functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app