Add like
Add dislike
Add to saved papers

Chemical Evolution in Silicon-Graphite Composite Anodes Investigated by Vibrational Spectroscopy.

Silicon-graphite composites are under development for the next generation of high-capacity lithium-ion anodes, and vibrational spectroscopy is a powerful tool to identify the different mechanisms that contribute to performance loss. With alloy anodes, the underlying causes of cell failure are significantly different in half-cells with lithium metal counter electrodes compared to full cells with standard cathodes. However, most studies which take advantage of vibrational spectroscopy have only examined half-cells. In this work, a combination of FTIR and Raman spectroscopy describes several factors that lead to degradation in full pouch cells with LiNi0.5 Mn0.3 Co0.2 O2 (NMC532) cathodes. The spectroscopic signatures evolve after longer term cycling compared to the initial formation cycles. Several side-reactions that consume lithium ions have clear FTIR signatures, and comparison to a library of reference compounds facilitates identification. Raman microspectroscopy combined with mapping shows that the composite anodes are not homogeneous but segregate into graphite-rich and silicon-rich phases. Lithiation does not proceed uniformly either. A basis analysis of Raman maps identifies electrochemically inactive regions of the anodes. The spectroscopic results presented here emphasize the importance of improving electrode processing and SEI stability to enable practical composite anodes with high silicon loadings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app