Add like
Add dislike
Add to saved papers

Using a deep learning network to recognise low back pain in static standing.

Ergonomics 2018 July 4
Low back pain (LBP) remains one of the most prevalent musculoskeletal disorders, while algorithms that able to recognise LBP patients from healthy population using balance performance data are rarely seen. In this study, human balance and body sway performance during standing trials were utilised to recognise chronic LBP populations using deep neural networks. To be specific, 44 chronic LBP and healthy individuals performed static standing tasks, while their spine kinematics and centre of pressure were recorded. A deep learning network with long short-term memory units was used for training, prediction and implementation. The performance of the model was evaluated by: (a) overall accuracy, (b) precision, (c) recall, (d) F1 measure, (e) receiver-operating characteristic and (f) area under the curve. Results indicated that deep neural networks could recognise LBP populations with precision up to 97.2% and recall up to 97.2%. Meanwhile, the results showed that the model with the C7 sensor output performed the best. Practitioner summary: Low back pain (LBP) remains the most common musculoskeletal disorder. In this study, we investigated the feasibility of applying artificial intelligent deep neural network in detecting LBP population from healthy controls with their kinematics data. Results showed a deep learning network can solve the above classification problem with both promising precision and recall performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app