Add like
Add dislike
Add to saved papers

Enhanced Thermoelectric Properties of Double-Filled CoSb 3 via High-Pressure Regulating.

It has been discussed for a long time that synthetic pressure can effectively optimize thermoelectric properties. The beneficial effect of synthesis pressures on thermoelectric properties has been discussed for a long time. In this paper, it is theoretically and experimentally demonstrated that appropriate synthesis pressures can increase the figure of merit (ZT) through optimizing thermal transport and electronic transport properties. Indium and barium atoms double-filled CoSb3 samples were prepared use high-pressure and high-temperature technique for half an hour. X-ray diffraction and some structure analysis were used to reveal the relationship between microstructures and thermoelectric properties. In0.15 Ba0.35 Co4 Sb12 samples were synthesized by different pressures; sample synthesized by 3 GPa has the best electrical transport properties, and sample synthesized by 2.5 GPa has the lowest thermal conductivity. The maximum ZT value of sample synthesized by 3.0 GPa reached 1.18.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app