Add like
Add dislike
Add to saved papers

Directional Passive Transport of Microdroplets in Oil-Infused Diverging Channels for Effective Condensate Removal.

Condensation widely exists in nature and industry, and its performance heavily relies on the efficiency of condensate removal. Recent advances in micro-/nanoscale surface engineering enable condensing droplet removal from solid surfaces without extra energy cost, but it is still challenging to achieve passive transport of microdroplets over long distances along horizontal surfaces. The mobility of these condensate droplets can be enhanced by lubricant oil infusion on flat surfaces and frequent coalescence, which lead to fast growth but random motion of droplets. In this work, we propose a novel design of diverging microchannels with oil-infused surfaces to achieve controllable, long-distance, and directional transport of condensing droplets on horizontal surfaces. This idea is experimentally demonstrated with diverging copper and silicon microchannels with nanoengineered surfaces. Along these hierarchical surface structures, microdroplets condense on the top channel wall and submerge into microchannels owing to the capillary pressure gradient in infusing oil. Confined by the microchannel walls, the submerged droplets deform and maintain the back-front curvature difference, which enables the motion of droplets along the channel diverging direction. Subsequent droplet coalescences inside the channel further enhance this directional transport. Moreover, fast-moving deformed droplets transfer their momentum to downstream spherical droplets through the infusing oil. As a result, simultaneous passive transport of multiple droplets (20-400 μm) is achieved over long distances (beyond 7 mm). On these oil-infused surfaces, satellite microdroplets can further nucleate and grow on an oil-cloaked droplet, demonstrating an enlarged surface area for condensation. Our findings on passive condensate removal offer great opportunities in condensation enhancement, self-cleaning, and other applications requiring directional droplet transport along horizontal surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app