Add like
Add dislike
Add to saved papers

Metabolic and Physiologic Imaging Biomarkers of the Tumor Microenvironment Predict Treatment Outcome with Radiation or a Hypoxia-Activated Prodrug in Mice.

Cancer Research 2018 July 16
Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxic niches that lead to treatment resistance. Therefore, studies of tumor oxygenation and metabolic profiling should contribute to improved treatment strategies. Here, we define two imaging biomarkers that predict differences in tumor response to therapy: (i) partial oxygen pressure (pO2 ), measured by EPR imaging; and (ii) [1-13 C] pyruvate metabolism rate, measured by hyperpolarized 13 C MRI. Three human PDAC xenografts with varying treatment sensitivity (Hs766t, MiaPaCa2, and Su.86.86) were grown in mice. The median pO2 of the mature Hs766t, MiaPaCa2, and Su.86.86 tumors was 9.1 ± 1.7, 11.1 ± 2.2, and 17.6 ± 2.6 mm Hg, and the rate of pyruvate-to-lactate conversion was 2.72 ± 0.48, 2.28 ± 0.26, and 1.98 ± 0.51 per minute, respectively ( n = 6, each). These results are in agreement with steady-state data of matabolites quantified by mass spectroscopy and histologic analysis, indicating glycolytic and hypoxia profile in Hs766t, MiaPaca2, and Su.86.86 tumors. Fractionated radiotherapy (5 Gy × 5) resulted in a tumor growth delay of 16.7 ± 1.6 and 18.0 ± 2.7 days in MiaPaca2 and Su.86.86 tumors, respectively, compared with 6.3 ± 2.7 days in hypoxic Hs766t tumors. Treatment with gemcitabine, a first-line chemotherapeutic agent, or the hypoxia-activated prodrug TH-302 was more effective against Hs766t tumors (20.0 ± 3.5 and 25.0 ± 7.7 days increase in survival time, respectively) than MiaPaCa2 (2.7 ± 0.4 and 6.7 ± 0.7 days) and Su.86.86 (4.7 ± 0.6 and 0.7 ± 0.6 days) tumors. Collectively, these results demonstrate the ability of molecular imaging biomarkers to predict the response of PDAC to treatment with radiotherapy and TH-302. Significance: pO2 imaging data and clinically available metabolic imaging data provide useful insight into predicting the treatment efficacy of chemotherapy, radiation, and a hypoxia-activated prodrug as monotherapies and combination therapies in PDAC tumor xenograft models. Cancer Res; 78(14); 3783-92. ©2018 AACR .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app