JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Effect of high-intensity resistance circuit-based training in hypoxia on aerobic performance and repeat sprint ability.

Recent acute studies have shown that high-intensity resistance circuit-based (HRC) training in hypoxia increases metabolic stress. However, no intervention studies have yet proven their effectiveness. This study aimed to analyze the effect of 8 weeks of HRC in hypoxia on aerobic performance, resting energy expenditure (REE), repeat sprint ability (RSA) and hematological variables. Twenty-eight subjects were assigned to hypoxia (FiO2  = 15%; HRChyp : n = 15; age: 24.6 ± 6.8 years; height: 177.4 ± 5.9 cm; weight: 74.9 ± 11.5 kg) and normoxia (FiO2  = 20.9%; HRCnorm : n = 13; age: 23.2 ± 5.2 years; height: 173.4 ± 6.2 cm; weight: 69.4 ± 7.4 kg) groups. Each training session consisted of two blocks of three exercises (Block 1: bench press, leg extension, front pull down; 2: deadlift, elbow flexion, ankle extension). Each exercise was performed at 6 repetitions maximum. Participants exercised twice weekly for 8 weeks and before and after the training program blood test, REE, RSA and treadmill running test were performed. Fatigue index in the RSA test was significantly decreased in the HRChyp (-0.9%; P < .01; ES = 2.75) but not in the HRCnorm . No changes were observed in REE and hematological variables. Absolute (4.5%; P = .014; ES = 0.42) and relative (5.2%; P = .008; ES = 0.43) maximal oxygen uptake (VO2 max), speed at VO2 max (4%; P = .010; ES = 0.25) and time to exhaustion (4.1%; P = .012; ES = 0.26) were significantly increased in HRChyp but not in the HRCnorm . No significant differences between groups were found. Compared with normoxic conditions, 8 weeks of HRC training under hypoxic conditions efficiently improves aerobic performance and RSA without changes in REE and red blood O2 -carrying capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app