Add like
Add dislike
Add to saved papers

Ontogeny of white matter, toll-like receptor expression, and motor skills in the neonatal ferret.

Inflammation caused by perinatal infection, superimposed with hypoxia and/or hyperoxia, appears to be important in the pathogenesis of preterm neonatal encephalopathy, with white matter particularly vulnerable during the third trimester. The associated inflammatory response is at least partly mediated through Toll-like receptor (TLR)-dependent mechanisms. Immunohistochemistry, gene expression, and behavioral studies were used to characterize white matter development and determine TLR3 and TLR4 expression and accumulation in the neonatal ferret brain. Expression of markers of white matter development increased significantly between postnatal day (P)1 and P10 (NG2, PDGFRα) or P15 (Olig2), and either remained elevated (NG2), or decreased again at P40 (PDGFRα, Olig2). Olig2 immunostaining within the internal capsule was also greatest at P15. Myelin basic protein (MBP) immunostaining and mRNA expression increased markedly from P15 to P40 and into adulthood, which correlated with increasing performance on behavioral tests (negative geotaxis, cliff aversion, righting reflex, and catwalk gait analysis). TLR4 and TLR3 positive staining was low at all ages, but TLR3 and TLR4 mRNA expression both increased significantly from P1 to P40. Following lipopolysaccharide (LPS) and hypoxia/hyperoxia exposure at P10, meningeal and parenchymal inflammation was seen, including an increase in TLR4 positive cells. These data suggest that the neuroinflammation associated with prematurity could be modeled in the newborn ferret.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app