Add like
Add dislike
Add to saved papers

Normalizing Tumor Microenvironment Based on Photosynthetic Abiotic/Biotic Nanoparticles.

ACS Nano 2018 May 32
Tumor hypoxia has attained the status of a core hallmark of cancer that globally affects the entire tumor phenotype. Reversing tumor hypoxia might offer alternative therapeutic opportunities for current anticancer therapies. In this research, a photosynthetic leaf-inspired abiotic/biotic nano-thylakoid (PLANT) system was designed by fusing the thylakoid membrane with synthetic nanoparticles for efficient O2 generation in vivo. Under 660 nm laser irradiation, the PLANT system exhibited intracellular O2 generation and the anaerobic respiration of the multicellular tumor spheroid was suppressed by PLANT as well. In vivo, it was found that PLANT could not only normalize the entire metabolic network but also adjust the abnormal structure and function of the tumor vasculature. It was demonstrated that PLANT could significantly enhance the efficacy of phototherapy or antiangiogenesis therapy. This facile approach for normalizing the tumor microenvironment will find great potential in tumor therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app