Add like
Add dislike
Add to saved papers

Real-time super-resolved 3D in turbid water using a fast range-gated CMOS camera.

Applied Optics 2018 May 11
We present a range-gated camera system designed for real-time (10 Hz) 3D estimation underwater. The system uses a fast-shutter CMOS sensor (1280×1024) customized to facilitate gating with 1.67 ns (18.8 cm in water) delay steps relative to the triggering of a solid-state actively Q-switched 532 nm laser. A depth estimation algorithm has been carefully designed to handle the effects of light scattering in water, i.e., forward and backward scattering. The raw range-gated signal is carefully filtered to reduce noise while preserving the signal even in the presence of unwanted backscatter. The resulting signal is proportional to the number of photons that are reflected during a small time unit (range), and objects will show up as peaks in the filtered signal. We present a peak-finding algorithm that is robust to unwanted forward scatter peaks and at the same time can pick out distant peaks that are barely higher than peaks caused by sensor and intensity noise. Super-resolution is achieved by fitting a parabola around the peak, which we show can provide depth precision below 1 cm at high signal levels. We show depth estimation results when scanning a range of 8 m (typically 1-9 m) at 10 Hz. The results are dependent on the water quality. We are capable of estimating depth at distances of over 4.5 attenuation lengths when imaging high albedo targets at low attenuation lengths, and we achieve a depth resolution (σ) ranging from 0.8 to 9 cm, depending on signal level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app