Add like
Add dislike
Add to saved papers

Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses.

Applied Optics 2018 May 11
A photonic crystal fiber (PCF) made of fused silica glass, infiltrated with carbon tetrachloride (CCl4 ), is proposed as a new source of supercontinuum (SC) light. Guiding properties in terms of effective refractive index, attenuation, and dispersion of the fundamental mode are studied numerically. As a result, two optimized structures are selected and verified against SC generation in detail. The dispersion characteristic of the first structure has the zero-dispersion wavelength at 1.252 μm, while the dispersion characteristic of the second structure is all-normal and equals -4.37  ps·nm-1 ·km-1 at 1.55 μm. SC generation was demonstrated for the wavelengths 1.064 μm, 1.35 μm, and 1.55 μm. We prove the possibility of coherent, octave-spanning SC generation with 300 fs pulses with only 0.8 nJ of energy in-coupled into the core with each of the studied structures. Proposed fibers are fully compatible with all-silica fiber systems and PCFs with wide mode area, and can also be used for all-fiber SC sources. The proposed solution may lead to new low-cost all-fiber optical systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app