Add like
Add dislike
Add to saved papers

Vibration-Assisted and Vibration-Hampered Excitonic Quantum Transport.

The interplay between excitons and vibrations is considered to be a key factor in determining the exciton-transfer properties in light-harvesting complexes. Here we study this interplay theoretically in a model for exciton transport, composed of two chromophores coupled to an exciton source and sink in the presence of vibrations. We consider two cases that show qualitatively distinct transport features. In the first, the vibrations are global and affect the two chromophores simultaneously. In the second case, the vibrations are localized on each chromophore. For global vibrations, the current exhibits antiresonances as a function of the chromophore energy difference, which are due to exciton-polaron interference. For local vibrations, on the contrary, the currents show tunneling resonances at multiples of the vibration energy. Counterintuitively, both effects increase with increasing temperature. Our results demonstrate that an environment can either assist or hamper exciton transport and is in accord with the current understanding of energy transfer in natural exciton-transfer complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app