Add like
Add dislike
Add to saved papers

PbTe quantum dots as electron transfer intermediates for the enhanced hydrogen evolution reaction of amorphous MoS x /TiO 2 nanotube arrays.

Nanoscale 2018 May 32
Amorphous molybdenum sulfides (a-MoSx) have been demonstrated as economic and efficient hydrogen evolution catalysts for water splitting. Further improvements of their hydrogen evolution reaction (HER) activities could be achieved by coupling them with appropriate electron transfer intermediates via interfacial engineering. In this study, a novel ternary composite electrode comprising PbTe quantum dots (QDs), a-MoSx and TiO2 nanotube arrays (TNAs) was successfully fabricated by a facile combination of successive ionic layer adsorption and reaction (SILAR) and electrodeposition routes. Investigation of the microstructures and electrocatalytic properties of the a-MoSx/PbTe QD/TNA hybrid material show that PbTe QDs can work as electron temporary storage and electron transfer intermediates between the electrocatalyst a-MoSx and electrode-based material TiO2 that significantly lower the impedance of electrode process, enhance the energy band bending at the interface between the electrolyte and electrode surface, and increase the electrochemically active surface area. The electron interphase crossing from a-MoSx to electrolyte and electron transport inside the electrode are greatly strengthened. The ternary PbTe@MoSx/TNA electrode demonstrates lowered onset potential and Tafel slope and superior electrocatalytic activity and cyclic stability towards HER.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app