Add like
Add dislike
Add to saved papers

Controllable Synthesis of Multiheteroatoms Co-Doped Hierarchical Porous Carbon Spheres as an Ideal Catalysis Platform.

The synthesis of porous carbon spheres with hierarchical porous structures coupled with the doping of heteroatoms is particularly important for advanced applications. In this research, a new route for efficient and controllable synthesis of hierarchical porous carbon spheres co-doped with nitrogen, phosphorus, and sulfur (denoted as NPS-HPCs) was reported. This new approach combines in situ polymerization of hexachlorocyclophosphazene and 4,4'-sulfonyldiphenol with the self-assembly of colloidal silica nanoparticles (SiO2 NPs). After pyrolysis and subsequent removal of the SiO2 NPs, the resulting NPS-HPCs possess a high surface area (960 m2 /g) as well as homogeneously distributed N, P, and S heteroatoms. The NPS-HPCs are shown to be an ideal support for anchoring highly dispersed and uniformly sized noble metal NPs for heterogeneous catalysis. As a proof of concept, Pd NPs are loaded onto the NPS-HPCs using only methanol as a reductant at room temperature. The prepared Pd/NPS-HPCs are shown to exhibit high activity, excellent stability, and recyclability for hydrogenation of nitroarenes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app