Add like
Add dislike
Add to saved papers

Changes in pituitary gene expression may underlie multiple domesticated traits in chickens.

Heredity 2018 May 23
Domesticated animals share a unique set of morphological and behavioral traits, jointly referred to as the domesticated phenotype. Striking similarities amongst a range of unrelated domesticated species suggest that similar regulatory mechanisms may underlie the domesticated phenotype. These include color pattern, growth, reproduction, development and stress response. Although previous studies have focused on the brain to find mechanisms underlying domestication, the potential role of the pituitary gland as a target of domestication is highly overlooked. Here, we study gene expression in the pituitary gland of the domesticated White Leghorn chicken and its wild ancestor, the Red Junglefowl. By overlapping differentially expressed genes with a previously published list of functionally important genes in the pituitary gland, we narrowed down to 34 genes. Amongst them, expression levels of genes with inhibitory function on pigmentation (ASIP), main stimulators of metabolism and sexual maturity (TSHB and DIO2), and a potential inhibitor of broodiness (PRLR), were higher in the domesticated breed. Additionally, expression of 2 key inhibitors of the stress response (NR3C1, CRHR2) was higher in the domesticated breed. We suggest that changes in the transcription of important modulatory genes in the pituitary gland can account not only for domestication of the stress response in domestic chickens, but also for changes in pigmentation, development, and reproduction. Given the pivotal role of the pituitary gland in the regulation of multiple shared domesticated traits, we suggest that similar changes in pituitary transcriptome may contribute to the domesticated phenotype in other species as well.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app