Add like
Add dislike
Add to saved papers

Tamoxifen-induced knockdown of the mitochondrial calcium uniporter in Thy1-expressing neurons protects mice from hypoxic/ischemic brain injury.

The mitochondrial calcium uniporter (MCU) mediates high-capacity mitochondrial calcium uptake that stimulates energy production. However, excessive MCU activity can cause ischemic heart injury. To examine if the MCU is also involved in hypoxic/ischemic (HI) brain injury, we have generated conditional MCU knockout mice by tamoxifen (TMX) administration to adult MCU-floxed (MCUfl/fl ) mice expressing a construct encoding Thy1-cre/ERT2-eYFP. Relative to TMX/Thy1-cre/ERT2-eYFP controls, HI-induced sensorimotor deficits, forebrain neuron loss and mitochondrial damage were decreased for conditional MCU knockout mice. MCU knockdown by siRNA-induced silencing in cortical neuron cultures also reduced cell death and mitochondrial respiratory deficits following oxygen-glucose deprivation. Furthermore, MCU silencing did not produce metabolic abnormalities in cortical neurons observed previously for global MCU nulls that increased reliance on glycolysis for energy production. Based on these findings, we propose that brain-penetrant MCU inhibitors have strong potential to be well-tolerated and highly-efficacious neuroprotectants for the acute management of ischemic stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app