Add like
Add dislike
Add to saved papers

N-Propyl-N'-2-pyridylurea-modified silica as mixed-mode stationary phase with moderate weak anion exchange capacity and pH-dependent surface charge reversal.

Herein, we present a novel silica-based stationary phase modified with N-propyl-N'-2-pyridylurea selector. Due to the weakly basic properties of the pyridine selector and the presence of residual silanols after selector immobilization, a zwitterionic surface with a pI observed at approximately pH 5.5 was measured by electrophoretic light scattering in pH-dependent ζ-potential determinations. The capability of the new N-propyl-N'-2-pyridylurea-modified silica to serve as mixed-mode stationary phase was investigated. For this purpose, it was characterized under RP and HILIC conditions using test mixtures. Subsequent classification of this stationary phase in comparison to in-house and commercial benchmarks was carried by principal component analysis of resultant retention factors from chromatographic tests. The results show a relatively unique mixed-mode character amongst the tested stationary phases. The chromatographic retention characteristics of acidic compounds matched well the ζ-potential determinations. The application of anion-exchange at low pH values (e.g. pH 5) and ion exclusion chromatography at pH 7 for the separation of uridine 5'-mono-, di- and triphosphate demonstrated a pH-dependent umpolung of the stationary phase surface. The combination of these separation principles in a pH gradient from 5 to 7 gave rise to weak anion-exchange selectivity with a charge-inducted elution due to repulsive interactions at higher pH and resulted in a significant faster separation with improved peak shape under mild elution conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app