Add like
Add dislike
Add to saved papers

Glutathione-triggered dual release of doxorubicin and camptothecin for highly efficient synergistic anticancer therapy.

An amphiphilic biodegradable prodrug (PLG-g-mPEG/CPT) was synthesized by conjugating disulfide-containing camptothecin (CPT) to poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol) (PLG-g-mPEG) through esterification reaction. The amphiphilic prodrugs could self-assemble into micellar nanoparticles and encapsulate doxorubicin (DOX) in aqueous solution at pH 7.4. The treatment of the nanoparticles with reducing glutathione (GSH) at cytosolic concentration (10 mM) significantly promoted the in vitro dual release of DOX and CPT from the micelles. The results of flow cytometry (FCM) and confocal laser scanning microscopy (CLSM) manifested that the intracellular release of DOX and CPT from the micelles was enhanced by increasing the intracellular GSH level. Consistently, the MCF-7 cell killing mediated by the micelles was also intracellular GSH concentration-dependent. The low combination index (CI) value of < 0.3 demonstrated the high synergistic effect of DOX and CPT co-delivered by the nanoparticles in tumor cell killing. Therefore, this GSH-triggered dual release drug delivery system is a promising strategy for combination cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app