Add like
Add dislike
Add to saved papers

Comprehensive analysis of a metabolic model for lipid production in Rhodosporidium toruloides.

The yeast Rhodosporidium toruloides has been extensively studied for its application in biolipid production. The knowledge of its metabolism capabilities and the application of constraint-based flux analysis methodology provide useful information for process prediction and optimization. The accuracy of the resulting predictions is highly dependent on metabolic models. A metabolic reconstruction for R. toruloides metabolism has been recently published. On the basis of this model, we developed a curated version that unblocks the central nitrogen metabolism and, in addition, completes charge and mass balances in some reactions neglected in the former model. Then, a comprehensive analysis of network capability was performed with the curated model and compared with the published metabolic reconstruction. The flux distribution obtained by lipid optimization with flux balance analysis was able to replicate the internal biochemical changes that lead to lipogenesis in oleaginous microorganisms. These results motivate the development of a genome-scale model for complete elucidation of R. toruloides metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app