Add like
Add dislike
Add to saved papers

Different players generate positive responses in two in vitro cytokine assay formats with aqueous and immobilized TGN1412 analog.

To detect potential risk of severe cytokine release syndrome, in vitro assay formats with human cells have been developed. The two major testing platforms are a combination of whole blood with aqueous-phase test articles (whole blood cytokine assay, WBCA) and peripheral blood mononuclear cells with solid-phase articles (PBMC assay). Significant induction of cytokines was seen in both assays after treatment with a widely used control agent, TGN1412 or its analog CD28SA, but the WBCA cytokine profile differed from what was expected from clinical experience. In the WBCA, potential risk of CD28SA was detected by elevation of IL-8 whereas IL-2, a key cytokine after stimulation of CD28, was not induced in approximately 40% of donor samples. Therefore, further mechanistic understanding of the different responses in the in vitro assay was needed. In this study of donor samples treated with CD28SA, we compared the induction of cytokines and identified the cytokine-producing cells in the two assays. IL-2 was markedly elevated in all the donors in the PBMC assay but only in 1 of 3 donors in the WBCA. IL-8, the most sensitive biomarker in the WBCA, was produced by monocytes and granulocytes. T cells, the most relevant player in the PBMC assay with CD28SA, did not contribute to the positive response seen in two donors in the WBCA, which suggests that different players caused the positive cytokine responses to CD28SA in the two assays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app