Add like
Add dislike
Add to saved papers

Enhanced Photogeneration of Reactive Oxygen Species and Targeted Photothermal Therapy of C6 Glioma Brain Cancer Cells by Folate-Conjugated Gold-Photoactive Polymer Nanoparticles.

Tumor-selective photodynamic therapy is a successful method for ablation of malignant and cancerous cells. Herein, we introduce the design and preparation of functionalized acrylic copolymer nanoparticles with spiropyran (SP) and imidazole groups through a facile semicontinuous emulsion polymerization. Then, Au3+ ions were immobilized and reduced on their surface to obtain photoresponsive gold-decorated polymer nanoparticles (PGPNPs). The prepared PGPNPs were surface-modified with folic acid as a site-specific tumor cell targeting agent and improve intracellular uptake via endocytosis. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy analyses, UV-vis spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy images were employed to characterize their spectral and morphological properties. Fluorescence microscopy images and inductively coupled plasma analysis demonstrated the cell line labeling capability and improved targeting efficiency of folate-conjugated PGPNPs (FA-PGPNPs) toward rat brain cancer cells (C6 glioma) with 71.8% cell uptake in comparison with 28.8% for the nonconjugated ones. Nonpolar SP groups are converted to zwitterionic merocyanine isomers under UV irradiation at 365 nm and their conjugation with Au nanoparticles exhibited enhanced photogeneration of reactive oxygen species (ROS). These were confirmed by intracellular ROS analysis and cytotoxicity evaluation on malignant C6 glioma cells. Owing to the strong surface plasmon resonance absorption of gold nanoparticles, FA-PGPNPs provided elevated local photothermal efficiency under near-IR irradiation at 808 nm. The prepared multifunctional FA-PGPNPs with a comprehensive integration of prospective materials introduced promising nanoprobes with targeting ability, enhanced tumor photodynamic therapy, cell tracking, and photothermal therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app