Add like
Add dislike
Add to saved papers

Protocols for Studies on Stromal Cells in Prostate Cancer.

Interactions between tumor cells and fibroblasts play a pivotal role in cancer development and progression. Indeed, the paracrine communication between these two cell types is known to have physiological effects that alter carcinogenic and metastatic potential. An often overlooked player in these interactions is the involvement of the extracellular matrix (ECM). The network of ECM proteins secreted from fibroblasts is reportedly altered with cancer initiation and progression, and in several cases has been associated with patient outcome. The androgen receptor (AR) is one such example and has been shown to be a dynamic and inducible regulator of ECM production. Contemporary assessment of dynamic multicellular interactions leading to cancer initiation and progression necessitates 3D in vitro modeling to better mimic the in vivo environment. In the current chapter, we describe some simple approaches to generate 3D models of fibroblast-produced ECM, how hormone manipulation of fibroblasts can lead to production of different ECMs, and how these ECM models can be used to test processes implicated in cancer progression and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app