Add like
Add dislike
Add to saved papers

Microfluidic system for modelling 3D tumour invasion into surrounding stroma and drug screening.

Biofabrication 2018 June 7
Tumour invasion into the surrounding stroma is a critical step in metastasis, and it is necessary to clarify the role of microenvironmental factors in tumour invasion. We present a microfluidic system that simulated and controlled multi-factors of the tumour microenvironment for three-dimensional (3D) assessment of tumour invasion into the stroma. The simultaneous, precise and continuous arrangement of two 3D matrices was visualised to observe the migration of cancer cell populations or single cells by transfecting cells with a fluorescent protein. A vascular endothelial layer was formed to simulate transendothelial transport of nutrients, and its endothelial barrier function was verified by the diffusion of 70 kDa fluorescein isothiocyanate (FITC)-Dextran in 3D matrices. Through high-throughput cell migration tracking observation and statistic evaluation, we clarified that cell density of the tumour directly determined its invasiveness. The results suggested that increased secretion of IL-6 among both cancer cells (MDA-MB-231) and noncancerous cells (MCF-10A or HDF-n) after co-culture contributes to cancer cell invasiveness, and this was verified by an IL-6 inhibitor assay. Finally, the drug efficacy of paclitaxel was reflected as changes in cancer cell migration ability, viability, and morphology. Together, our microfluidic devices could be a useful tool to study the mechanism of tumour invasion into the stroma and to screen anti-metastatic drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app