Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exploring the Confinement Effect of Carbon Nanotubes on the Electrochemical Properties of Prussian Blue Nanoparticles.

A novel and efficient photochemical method has been proposed for the encapsulation of Prussian blue nanoparticles (PBNPs) inside the channels of carbon nanotubes (PB-in-CNTs) in an acidic ferrocyanide solution under UV/vis illumination, and the confinement effect of CNTs on the electrochemical properties of PBNPs is systematically explored. PB-in-CNTs show a faster electron-transfer process, an enhanced electrocatalytic activity toward the reduction of H2 O2 , and an increased anti-base ability compared to PBNPs loaded outside of CNTs (PB-out-CNTs). In addition, PB-in-CNTs show an increased electrochemical reversibility and an unexpected diameter-independent catalytic activity with the decrease of CNT diameters. The improved electrochemical properties of PB-in-CNTs are attributed to the modified electronic properties and dimensions of PBNPs induced by the confinement effect of CNTs. This work provides further insights into the confinement effect on the properties of nanomaterials and will inspire extensive relevant investigations in the development of novel composites or excellent catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app