Add like
Add dislike
Add to saved papers

miR‑494 inhibits cancer‑initiating cell phenotypes and reverses resistance to lapatinib by downregulating FGFR2 in HER2‑positive gastric cancer.

In gastric cancer, >15% of cases are associated with the amplification of human epidermal growth factor receptor 2 (HER2), which leads to poor clinical outcomes. Lapatinib, a potent ATP‑competitive inhibitor, is a small, orally active molecule, which inhibits the tyrosine kinases of HER2 and epidermal growth factor receptor type 1. The activation of receptor tyrosine kinases can contribute to lapatinib resistance in HER2‑positive gastric cancer. The aim of the present study was to explore the effects of miR‑494 and FGFR2 in regulation of cancer‑initiating cell phenotypes and therapeutic efficiency of lapatinib in HER2‑positive gastric cancer. Western blot analysis was used to identify that the expression of fibroblast growth factor receptor 2 (FGFR2), a receptor tyrosine kinase, was upregulated in gastric cancer tissues. Formation of cancer initiating cells (CICs) and resistance to lapatinib were determined using sphere growth assay and MTT assay, respectively. The overexpression of FGFR2 promoted the generation of cancer‑initiating cells (CICs) and resistance to lapatinib in HER2‑positive gastric cancer YCC1 cells. In addition, it was observed that overexpression of microRNA (miR)‑494 downregulated the protein expression of FGFR2, inhibited the formation of CICs and reversed lapatinib resistance in YCC1‑F cells (HER2‑positive, FGFR2 overexpressing and lapatinib‑resistant gastric cancer cells). Therefore, it was concluded that miR‑494 inhibited the CIC phenotype and reversed resistance to lapatinib by inhibiting FGFR2 in HER2‑positive gastric cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app