Add like
Add dislike
Add to saved papers

Species differences in bile acids I. Plasma and urine bile acid composition.

Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug-induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri-OH BAs in hamster, rat, dog and mice, di-OH BAs in human, rabbit and minipig, and mono-OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri-OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app