Add like
Add dislike
Add to saved papers

An immunoconjugated up-conversion nanocomplex for selective imaging and photodynamic therapy against HER2-positive breast cancer.

Nanoscale 2018 May 32
Photodynamic therapy represents a very attractive therapeutic tool considered to be effective, minimally invasive and minimally toxic. However, conventional photodynamic therapy actually has two main constraints: the limited penetration depth of visible light needed for its activation, and the lack of selectivity. Considering this, this work reports the synthesis and evaluation of a novel nanoconjugate for imaging and selective photodynamic therapy against HER2-positive breast cancer, a particularly aggressive form of the disease. It was demonstrated that upon 975 nm near infrared light exposure, the red emission of the NaYF4:Yb,Er up-conversion nanoparticles (UCNPs) can be used for optical imaging and simultaneously represent the source for the excitation of a covalently bound zinc tetracarboxyphenoxy phthalocyanine (ZnPc), a photosensitizer that in turn transfers energy to ground state molecular oxygen to produce cytotoxic singlet oxygen. The specificity of our nanoconjugates was achieved by immunoconjugation with Trastuzumab (Tras), a specific monoclonal antibody for selective detection and treatment of HER2-overexpressing malignant breast cancer cells. Selective tracking of SKBR-3 HER2-positive cells was verified by confocal microscopy analysis, and the photodynamic therapy effect was considerably improved when Trastuzumab was incorporated into the nanoconjugate, the UCNPs-ZnPc-Tras being practically inert in the absence of infrared light exposure but reducing the HER2-positive cell viability up to 21% upon 5 min of the irradiation. This theranostic nanoconjugate represents a valuable alternative for HER2-positive breast cancer imaging and selective photodynamic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app