Add like
Add dislike
Add to saved papers

The immunomodulatory activity and mechanism of docosahexenoic acid (DHA) on immunosuppressive mice models.

Food & Function 2018 June 21
In this study, the immunomodulatory activity of docosahexaenoic acid (DHA) on the immunosuppressive BALB/c mice model and its molecular mechanism are elucidated. It was found that the weight indexes of the spleen and thymus were significantly increased by DHA (44.0 mg kg-1 and 88.0 mg kg-1) treatment in the prevention or cure groups. The result of macrophages showed that DHA (44.0 mg kg-1 and 88.0 mg kg-1) could promote the proliferation and phagocytosis activity of macrophages in the prevention or cure groups. In addition, DHA could activate macrophages by the G-protein coupled cell membrane receptor GPR120- Mitogen-Activated Protein Kinases (MAPKs)-nuclear factor κB (NF-κB) p65 pathway in vivo. The result of the spleen showed that DHA (44.0 mg kg-1 and 88.0 mg kg-1) could promote the proliferation of spleen cells and the natural killer (NK) cells activity in vivo. In the prevention or cure groups, the quantitative real-time polymerase chain reaction (qRT-PCR) results revealed that DHA (44.0 mg kg-1 and 88.0 mg kg-1) could enhance the production of cytokines IL-1β, IL-2, TNF-α and IFN-γ in the spleen of immunosuppressive mice. The HE (hematoxylin and eosin) stained histopathological images showed that DHA could repair the damage induced by CTX in the spleen cells of the prevention or cure groups. These results suggested that DHA has a remarkable immunomodulatory activity on the immunosuppressive mice model in the prevention or cure groups.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app