Add like
Add dislike
Add to saved papers

An In Vivo Zebrafish Model for Interrogating ROS-Mediated Pancreatic β -Cell Injury, Response, and Prevention.

It is well known that a chronic state of elevated reactive oxygen species (ROS) in pancreatic β -cells impairs their ability to release insulin in response to elevated plasma glucose. Moreover, at its extreme, unmitigated ROS drives regulated cell death. This dysfunctional state of ROS buildup can result both from genetic predisposition and environmental factors such as obesity and overnutrition. Importantly, excessive ROS buildup may underlie metabolic pathologies such as type 2 diabetes mellitus. The ability to monitor ROS dynamics in β -cells in situ and to manipulate it via genetic, pharmacological, and environmental means would accelerate the development of novel therapeutics that could abate this pathology. Currently, there is a lack of models with these attributes that are available to the field. In this study, we use a zebrafish model to demonstrate that ROS can be generated in a β -cell-specific manner using a hybrid chemical genetic approach. Using a transgenic nitroreductase-expressing zebrafish line, Tg(ins:Flag-NTR)s950 , treated with the prodrug metronidazole (MTZ), we found that ROS is rapidly and explicitly generated in β -cells. Furthermore, the level of ROS generated was proportional to the dosage of prodrug added to the system. At high doses of MTZ, caspase 3 was rapidly cleaved, β -cells underwent regulated cell death, and macrophages were recruited to the islet to phagocytose the debris. Based on our findings, we propose a model for the mechanism of NTR/MTZ action in transgenic eukaryotic cells and demonstrate the robust utility of this system to model ROS-related disease pathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app