Add like
Add dislike
Add to saved papers

The anti-cancer activity of an andrographolide analogue functions through a GSK-3β-independent Wnt/β-catenin signaling pathway in colorectal cancer cells.

Scientific Reports 2018 May 22
The Wnt/β-catenin signaling pathway plays a key role in the progression of human colorectal cancers (CRCs) and is one of the leading targets of chemotherapy agents developed for CRC. The present study aimed to investigate the anti-cancer effects and molecular mechanisms of 19-O-triphenylmethyl andrographolide (RS-PP-050), an andrographolide analogue and determine its activity in the Wnt/β-catenin pathway. RS-PP-050 was found to potently inhibit the proliferation and survival of HT-29 CRC cells. It induces cell cycle arrest and promotes apoptotic cell death which was associated with the activation of PARP-1 and p53. Furthermore, RS-PP-050 exerts inhibitory effects on β-catenin transcription by suppressing T-cell factor/lymphocyte enhancer factor (TCF/LEF) activity in cells overexpressing β-catenin and by down-regulating the endogenous expression of Wnt target genes. RS-PP-050 also decreased the protein expression of the active form of β-catenin but functions independently of GSK-3β, a negative regulator of Wnt. Interestingly, RS-PP-050 extensively blocks phosphorylation at Ser675 of β-catenin which links to interference of the nuclear translocation of β-catenin and might contribute to Wnt inactivation. Collectively, our findings reveal the underlying anti-cancer mechanism of an andrographolide analogue and provide useful insight for exploiting a newly chemotherapeutic agent in Wnt/β-catenin-overexpressing CRC cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app