Add like
Add dislike
Add to saved papers

Cytosolic delivery of multi-domain cargos by the N-terminus of Pasteurella multocida toxin.

The zoonotic pathogen Pasteurella multocida produces a 146-kDa modular toxin (PMT) that enters host cells and manipulates intracellular signaling through action on its Gα-protein targets. The N-terminus of PMT (PMT-N) mediates cellular uptake through receptor-mediated endocytosis, followed by delivery of the C-terminal catalytic domain from acidic endosomes into the cytosol. The putative native cargo of PMT consists of a 710-residue polypeptide of three distinct modular subdomains (C1-C2-C3), where C1 contains a membrane localization domain (MLD), C2 has as-of-yet undefined function, and C3 catalyzes deamidation of a specific active-site glutamine residue in Gα-protein targets. However, whether the three cargo subdomains are delivered intact or undergo further proteolytic processing during or after translocation from the late endosome is unclear. Here, we demonstrate that PMT-N mediates delivery of its native C-terminal cargo as a single polypeptide, corresponding to C1-C2-C3, including the MLD, with no evidence of cleavage between subdomains. We show that PMT-N also delivers into the cytosol non-native GFP cargo, further supporting that the receptor-binding and translocation functions reside within PMT-N. Our findings further show that PMT-N can deliver C1-C2 alone but that the presence of C1-C2 is important for cytosolic delivery of the catalytic C3 subdomain by PMT-N. In addition, we further refine the minimum C3 domain required for intracellular activity as comprising residues 1105-1278. These findings reinforce that PMT-N serves as the cytosolic delivery vehicle for C-terminal cargo and demonstrate that its native cargo is delivered intact as C1-C2-C3.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app