Add like
Add dislike
Add to saved papers

Ibuprofen Decreases Spontaneous Activity and Enhances Nerve-Evoked Contractions to Minimize Mitomycin C-Induced Bladder Dysfunction.

Inflammation may play a causal role in urological side effects reported following intravesical mitomycin C (MMC). Our aim was to investigate the effects of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) on the cytotoxic potency of MMC and the potential for IBU to protect against bladder dysfunction. Malignant (RT4, T24) and normal (UROtsa) urothelial lines were treated with MMC followed by ibuprofen, with cell viability and caspase-3 activity assessed. Female C57BL/6JArc mice (Saline/Control, MMC, Saline + IBU, and MMC + IBU) received intravesical treatment (1 hour) with saline or MMC (2 mg/ml), with IBU (1 mg/ml) delivered in drinking water (for 7 days). Voiding pattern analysis was conducted prior to and following (1, 3, 7 days) treatment. A whole-bladder preparation was used to assess compliance, contractile responses, and urothelial-mediator release. Ibuprofen selectively increased the cytotoxic potency of MMC and caspase-3 activity in both malignant cells lines but not in UROtsa. MMC significantly increased voiding frequency at 24 hours and 3 days, whereas administration of ibuprofen significantly reduced this effect. MMC significantly increased the frequency of spontaneous contractions from 2.3 ± 0.5 contractions/min in saline controls to 4.8 ± 0.16 contractions/min, with ibuprofen protecting against this change. Interestingly, although nerve-evoked responses were not altered by MMC, they were increased in both IBU groups. Ibuprofen improved voiding dysfunction following MMC treatment by reducing spontaneous phasic activity and enhancing nerve-mediated contractions. Ibuprofen use in bladder cancer patients may help to minimize the urological adverse effects associated with intravesical MMC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app