Add like
Add dislike
Add to saved papers

Development of a SERS strategy to overcome the nanoparticle stabilisation effect in serum-containing samples: Application to the quantification of dopamine in the culture medium of PC-12 cells.

Talanta 2018 August 16
The analysis of serum samples by surface-enhanced Raman spectroscopy (SERS) has gained ground over the last few years. However, the stabilisation of colloids by the proteins contained in these samples has restricted their use in common practice, unless antibodies or aptamers are used. Therefore, this work was dedicated to the development of a SERS methodology allowing the analysis of serum samples in a simple and easy-to-implement way. This approach was based on the pre-aggregation of the colloid with a salt solution. Gold nanoparticles (AuNPs) were used as the SERS substrate and, owing to its physiopathological importance, dopamine was chosen as a model to implement the SERS approach. The presence of this neurotransmitter could be determined in the concentration range 0.5-50 ppm (2.64-264 µM) in the culture medium of PC-12 cells, with a R2 of 0.9874, and at even lower concentrations (0.25 ppm, 1.32 µM) in another matrix containing fewer proteins. Moreover, the effect of calcium and potassium on the dopamine exocytosis from PC-12 cells was studied. Calcium was shown to have a predominant and dose-dependant effect. Finally, PC-12 cells were exposed to dexamethasone in order to increase their biosynthesis and release of dopamine. This increase was monitored with the developed SERS approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app