Add like
Add dislike
Add to saved papers

Phosphate-imprinted magnetic nanoparticles using phenylphosphonic acid as a template for excellent recognition of tyrosine phosphopeptides.

Talanta 2018 August 16
The tyrosine phosphorylation of proteins and peptides plays a vital role in cell signal transduction pathways, and it is very important to assay them for understanding their action mechanism. Due to the low levels of the tyrosine phosphopeptides (pTyr) in cells, it is a challenge to enrich them with traditional sorbents, therefore, development of specific and selective sorbents is urgent and necessary. In this work, the phosphate-imprinted magnetic nanoparticles (PMNPs) to enrich the pTyr with high efficiency and selectivity have been fabricated using the phenylphosphonic acid as a template for the "epitope" of pTyr. The magnetic nanoparticles have been functionalized with TiO2 and then the imprinting silica shells have been coated on the surface of the functional core to obtain the PMNPs sorbents. The PMNPs can obviously shorten the enrichment time and improve the adsorption efficiency for pTyr, and the epitope imprinting films provide an excellent selective recognition ability to target. The recognition capability of PMNPs for pTyr is 90.3 μg/mg and the imprinting factor of the sorbents can reach 24.4. The results indicate that the PMNPs can enrich the pTyr from the tryptic digest of β-casein samples with high specificity, and the spiking recoveries of the pTyr range from 85.1% to 93.8% with the RSD from 0.04 to 3.73. With the high adsorption capacity, rapid separation, excellent specificity and recyclability, the PMNPs sorbents show great potential for analysis of the phosphorylation of peptides in biological and medical fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app