Add like
Add dislike
Add to saved papers

Quantitative investigation of hydraulic mixing energy input during batch mode anaerobic digestion and its impact on performance.

Bioresource Technology 2018 September
The relationship between mixing energy input and biogas production was investigated by anaerobically digesting sewage sludge in lab scale, hydraulically mixed, batch mode digesters at six different specific energy inputs. The goal was to identify how mixing energy influenced digestion performance at quantitative levels to help explain the varying results in other published works. The results showed that digester homogeneity was largely uninfluenced by energy input, whereas cumulative biogas production and solids destruction were. With similar solids distributions between conditions, the observed differences were attributed to shear forces disrupting substrate-microbe flocs rather than the formation of temperature and/or concentration gradients. Disruption of the substrate-microbe flocs produced less favourable conditions for hydrolytic bacteria, resulting in less production of biomass and more biogas. Overall, this hypothesis explains the current body of research including the inhibitory conditions reported at extreme mixing power inputs. However, further work is required to definitively prove it.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app