Add like
Add dislike
Add to saved papers

Polymeric nanocomposites for the removal of Acid red 52 dye from aqueous solutions: Synthesis, characterization, kinetic and isotherm studies.

Polymeric nanocomposites polyaniline-polyvinylpyrrolidone (PAPV) and polyaniline-polyvinylpyrrolidone-neodymium/zinc oxide (PAPV-NZO) were synthesized for the effective dye removal through adsorption process. Neodymium doped zinc oxide (NZO) with various proportions of neodymium were prepared by chemical co-precipitation method and incorporated into the copolymer matrix via oxidative polymerization technique. NZO nanoparticles were characterized by X-ray diffraction (XRD) and the morphological features, and functional group linkages of the PAPV-NZO were confirmed by scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analyses. Acid red 52 dye was chosen as a synthetic toxic effluent to study the removal efficiency of the nanocomposites with different parameters viz. time, concentration, adsorbent dosage and pH. The studies were performed under visible light irradiation and the residual dye concentration was analyzed by UV-visible spectrophotometer. PAPV-NZO exhibited greater dye removal rate than PAPV due to the incorporation of NZO that enhanced the conducting nature, stability and surface area of PAPV-NZO. The optimum concentration of the dye and the adsorbent dosage of the PAPV-NZO were determined to be 80 ppm and 50 mg, respectively. At acidic condition of pH 2, the removal capacity of PAPV-NZO was found 99.6%. Kinetic and isotherm models have been studied on the optimum parameters to investigate the nature of the adsorption process. The process followed pseudo second order kinetics and was best suited to the Langmuir model. The maximum dye adsorption capacity of PAPV-NZO was estimated to be 159.36 mg g-1 . From the results, it can be assured that the PAPV-NZO can be effectively used for the removal of dye pollutants in water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app