Add like
Add dislike
Add to saved papers

A Direct Plasma miRNA Assay for Early Detection and Histological Classification of Lung Cancer.

Cell-free microRNAs in plasma provide circulating biomarkers for lung cancer. Most techniques for analysis of miRNAs require a large plasma volume to purify a sufficient RNA yield followed by complicated downstream processing. Small differences in the multiple procedures often cause large analytical variations and poor diagnostic values of the plasma biomarkers. Here we investigate whether directly quantifying plasma miRNAs without RNA purification could diagnose lung cancer. FirePlex assay was directly applied to 20 μl plasma of 56 lung cancer patients and 28 cancer free controls for quantifying 11 lung tumor-associated miRNAs. FirePlex assay is easier, less expensive and time-consuming for quantification of plasma miRNAs compared with conventional reverse transcription PCR with an equivalent analytic performance. From the lung tumor-associated miRNAs, a prediction model based on two miRNAs (miRs-205-5p and -210-3p) was developed, producing 78.6% sensitivity and 89.3% specificity for identifying lung cancer. The diagnostic value was independent of stage of lung tumor, and patients' age and sex (all P > 0.05). Furthermore, based on the same two miRNAs, additional prediction models were developed with 75.0% sensitivity and 89.3% specificity for diagnosis of lung squamous cell carcinoma, and 82.2% sensitivity and 89.3% specificity for lung adenocarcinoma. The direct plasma assay can improve the efficacy of miRNA assessment in a small plasma volume by reducing multiple procedure-associated analytical variables. The developed plasma miRNA biomarkers might be useful for the early detection and histological classification of lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app