Add like
Add dislike
Add to saved papers

Cdk5-mediated Acn/Acinus phosphorylation regulates basal autophagy independently of metabolic stress.

In neurons, autophagy counteracts consequences of aging. It is therefore of interest how basal rates of macroautophagy/autophagy can be controlled independently of metabolic stress. We recently investigated the regulation of basal, starvation-independent autophagy by Acn/Acinus, a multifunctional nuclear protein with proposed roles in apoptosis, alternative RNA splicing, and basal autophagy. We found that Acn is stabilized by phosphorylation of the conserved serine 437. The phosphomimetic AcnS437D mutation causes no overt developmental phenotypes, but significantly elevates levels of basal autophagy and extends life spans. An RNAi screen identified Cdk5 as a kinase targeting S437, a role confirmed by gain- and loss-of-function mutants of Cdk5 or its obligatory cofactor Cdk5r1/p35. Flies lacking Cdk5 function display reduced basal autophagy and a shortened life span. Both of these phenotypes are suppressed by the phosphomimetic AcnS437D mutation, indicating that phosphorylating serine 437 of Acn, and thereby maintaining basal levels of autophagy, is critical for Cdk5's function in maintaining neuronal health.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app