Add like
Add dislike
Add to saved papers

Role of Marine Snows in Microplastic Fate and Bioavailability.

Microplastics contaminate global oceans and are accumulating in sediments at levels thought sufficient to leave a permanent layer in the fossil record. Despite this, the processes that vertically transport buoyant polymers from surface waters to the benthos are poorly understood. Here we demonstrate that laboratory generated marine snows can transport microplastics of different shapes, sizes, and polymers away from the water surface and enhance their bioavailability to benthic organisms. Sinking rates of all tested microplastics increased when incorporated into snows, with large changes observed for the buoyant polymer polyethylene with an increase in sinking rate of 818 m day-1 and for denser polyamide fragments of 916 m day-1 . Incorporation into snows increased microplastic bioavailability for mussels, where uptake increased from zero to 340 microplastics individual-1 for free microplastics to up to 1.6 × 105 microplastics individual-1 when incorporated into snows. We therefore propose that marine snow formation and fate has the potential to play a key role in the biogeochemical processing of microplastic pollution.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app